Lecture 14 on Oct. 312013

In the last lecture note, we showed that for $f(z)=z$ and $g(z) \equiv 1$, the integrals over unit circle are 0 . But the integral of $1 / z$ over the unit circle is $2 \pi i$. In this lecture, we consider the following question:

Q: Given Ω an open set in \mathbb{R}^{2}, when can we have

$$
\int_{\gamma} f(z) \mathrm{d} z=0, \quad \text { for all } \gamma \text { a closed curve in } \Omega
$$

Supposing that $f=u+i v$, by definition, we know that

$$
\int_{\gamma} f(z) \mathrm{d} z=\int_{\gamma} u \mathrm{~d} x-v \mathrm{~d} y+i \int_{\gamma} v \mathrm{~d} y+u \mathrm{~d} x
$$

Therefore the above question is reduced to find u and v so that

$$
\int_{\gamma} u \mathrm{~d} x-v \mathrm{~d} y=0 \quad \text { and } \quad \int_{\gamma} v \mathrm{~d} y+u \mathrm{~d} x=0, \quad \text { for all } \gamma \text { a closed curve in } \Omega .
$$

Standard arguments from calculus show that there must have F_{1} and F_{2} so that

$$
\partial_{x} F_{1}=u, \quad \partial_{y} F_{1}=-v, \quad \partial_{x} F_{2}=v, \quad \partial_{y} F_{2}=u
$$

Setting $F=F_{1}+i F_{2}$, the above equalities tell us that F satisfies Cauchy Riemann equation and meanwhile $F^{\prime}=\partial_{x} F_{1}+i \partial_{x} F_{2}=u+i v=f$. Therefore f must be a derivative of some analytic function. Moreover if $f=F^{\prime}$ where F is an analytic function on Ω, then the integral in the above question is 0 for all γ a closed curve in Ω. Now let us take a look at the three examples in the last lecture. $f(z)=z$ is the derivative of $F(z)=z^{2} / 2 . g(z) \equiv 1$ is the derivative of $F(z)=z$. Therefore the integral of f and g over any closed curve must be 0 . The function $h(z)=1 / z$ is different. We know that it must be the derivative of $\log z . \operatorname{But} \log z$ must be defined on $\mathbb{C} \backslash l$, where l is a continuous curve connecting 0 and ∞. If γ is the unit circle, we know that for any open set containing γ, l must have an intersection with this open set. Therefore $\log z$ is not analytic for all points in the open set. So we can not imply that $\int_{\gamma} 1 / z \mathrm{~d} z=0$ for all γ a closed curve. In fact the third example in the last lecture shows that the integral of $1 / z$ over the unit circle equals to $2 \pi i$.

